Ljudski mozak

HUMAN BRAIN, organ koji koordinira i regulira sve vitalne funkcije tijela i kontrolira ponašanje. Sve naše misli, osjećaji, osjećaji, želje i pokreti povezani su s radom mozga, a ako ne funkcionira, osoba odlazi u vegetativno stanje: gubi se sposobnost za bilo kakvo djelovanje, osjećaj ili reakciju na vanjske utjecaje. Ovaj se članak usredotočuje na ljudski mozak, složeniji i organiziraniji od mozga životinja. Međutim, postoje značajne sličnosti u strukturi ljudskog mozga i drugih sisavaca, kao i većina vrsta kralježnjaka.

Središnji živčani sustav (CNS) sastoji se od mozga i leđne moždine. To je povezano s različitim dijelovima tijela perifernim živcima - motornim i osjetilnim. Vidi također NERVOUSNI SUSTAV.

Mozak je simetrična struktura, kao i većina drugih dijelova tijela. Prilikom rođenja težina mu je oko 0,3 kg, dok kod odrasle osobe iznosi cca. 1,5 kg. Na vanjskom pregledu mozga pozornost privlače dvije velike hemisfere koje skrivaju dublje formacije. Površina hemisfera prekrivena je utorima i konvolucijama koje povećavaju površinu korteksa (vanjski sloj mozga). Iza cerebeluma je smještena, čija je površina tanko rezana. Ispod velikih polutki nalazi se deblo koje prolazi u kičmenu moždinu. Živci napuštaju trup i leđnu moždinu, uz koje informacije prelaze iz unutarnjih i vanjskih receptora u mozak, a signali mišićima i žlijezdama teku u suprotnom smjeru. 12 parova kranijalnih živaca udaljava se od mozga.

Unutar mozga razlikuje se siva tvar koja se sastoji uglavnom od tijela živčanih stanica i formira korteks, a bijela materija - živčana vlakna koja tvore vodljive puteve (traktove) koji povezuju različite dijelove mozga, a također tvore živce koji idu dalje od središnjeg živčanog sustava i odlaze na raznih organa.

Mozak i kičmena moždina zaštićeni su koštanim slučajevima - lubanjom i kralježnicom. Između supstance mozga i koštanih zidova nalaze se tri školjke: vanjski - dura mater, unutarnji - mekani, a između njih - tanak arahnoid. Prostor između membrana ispunjen je cerebrospinalnom (cerebrospinalnom) tekućinom koja je po sastavu slična krvnoj plazmi, koja se stvara u intracerebralnim šupljinama (komorama mozga) i cirkulira u mozgu i kralježničnoj moždini, opskrbljujući je hranjivim tvarima i drugim čimbenicima potrebnim za vitalnu aktivnost.

Dotok krvi u mozak osigurava se prvenstveno karotidnim arterijama; u podnožju mozga, oni su podijeljeni u velike grane koje idu na njegove različite dijelove. Iako je težina mozga samo 2,5% tjelesne težine, ona neprestano, danju i noću, prima 20% krvi koja cirkulira u tijelu, a time i kisika. Energetske rezerve samog mozga su izuzetno male, tako da je izuzetno ovisna o opskrbi kisikom. Postoje zaštitni mehanizmi koji mogu podržati cerebralni protok krvi u slučaju krvarenja ili ozljede. Značajka cerebralne cirkulacije je i prisutnost tzv. krvno-moždana barijera. Sastoji se od nekoliko membrana koje ograničavaju propusnost zidova krvnih žila i protok mnogih spojeva iz krvi u supstancu mozga; dakle, ova barijera obavlja zaštitne funkcije. Na primjer, mnoge lijekove ne prodiru kroz njega.

Ćelije mozga

CNS stanice se nazivaju neuroni; njihova funkcija je obrada informacija. U ljudskom mozgu od 5 do 20 milijardi neurona. Struktura mozga također uključuje glijalne stanice, oko 10 puta je više od neurona. Glia ispunjava prostor između neurona, tvoreći potporni okvir živčanog tkiva, te također obavlja metaboličke i druge funkcije.

Neuron, kao i sve druge stanice, okružen je polupropusnom (plazma) membranom. Dva tipa procesa odstupaju od tjelesnog tijela - dendriti i aksoni. Većina neurona ima mnogo razgranatih dendrita, ali samo jedan akson. Dendriti su obično vrlo kratki, a dužina aksona varira od nekoliko centimetara do nekoliko metara. Tijelo neurona sadrži jezgru i druge organele, jednako kao iu drugim stanicama tijela (vidi također CELL).

Živčani impulsi.

Prijenos informacija u mozgu, kao i na živčani sustav u cjelini, provodi se pomoću živčanih impulsa. Oni se šire u smjeru od tijela stanice do terminalnog dijela aksona, koji se može granati, tvoreći skup završetaka u kontaktu s drugim neuronima kroz uski prorez, sinapsu; prijenos impulsa kroz sinapsu posreduju kemijske tvari - neurotransmiteri.

Nervni impuls obično nastaje u dendritima - tankim procesima grananja neurona koji su specijalizirani za dobivanje informacija od drugih neurona i prijenos u tijelo neurona. Na dendritima i, u manjem broju, postoje tisuće sinapsi na tijelu stanice; to je kroz aksonske sinapse, noseći informacije iz tijela neurona, prenose ga dendriti drugih neurona.

Kraj aksona, koji čini presinaptički dio sinapse, sadrži male mjehuriće s neurotransmiterima. Kada impuls dosegne presinaptičku membranu, neurotransmiter iz vezikule se oslobađa u sinaptički rascjep. Kraj aksona sadrži samo jednu vrstu neurotransmitera, često u kombinaciji s jednom ili više vrsta neuromodulatora (vidi Brain Neurochemistry).

Neurotransmiter oslobođen iz presinaptičke membrane aksona veže se na receptore na dendritima postsinaptičkog neurona. Mozak koristi niz neurotransmitera, od kojih je svaki povezan s njegovim posebnim receptorom.

Receptori na dendritima povezani su s kanalima u polupropusnoj postsinaptičnoj membrani koja kontrolira kretanje iona kroz membranu. U mirovanju, neuron ima električni potencijal od 70 milivolta (potencijal mirovanja), dok je unutarnja strana membrane negativno nabijena s obzirom na vanjski. Iako postoje različiti posrednici, svi oni imaju stimulirajući ili inhibitorni učinak na postsinaptički neuron. Stimulirajući učinak ostvaruje se povećanjem protoka određenih iona, uglavnom natrija i kalija, kroz membranu. Kao rezultat toga, negativni naboj unutarnje površine se smanjuje - depolarizacija se događa. Učinak kočenja dolazi uglavnom kroz promjene u protoku kalija i klorida, što rezultira time da negativni naboj unutarnje površine postaje veći nego u mirovanju, te dolazi do hiperpolarizacije.

Funkcija neurona je da integrira sve utjecaje percipirane kroz sinapse na njegovo tijelo i dendrite. Budući da ti utjecaji mogu biti ekscitatorni ili inhibitorni i ne podudaraju se u vremenu, neuron mora izračunati ukupni učinak sinaptičke aktivnosti kao funkciju vremena. Ako pobudni učinak prevladava nad inhibitornim i membranska depolarizacija prelazi graničnu vrijednost, aktivira se određeni dio neuronske membrane - u području baze aksona (aksonskog tuberkule). Ovdje se, kao posljedica otvaranja kanala za natrijeve i kalijeve ione, javlja akcijski potencijal (nervni impuls).

Taj se potencijal proteže dalje duž aksona do njegovog kraja brzinom od 0,1 m / s do 100 m / s (što je akson deblji, to je veća brzina provođenja). Kada akcijski potencijal dosegne kraj aksona, aktivira se druga vrsta ionskih kanala, ovisno o razlici potencijala, kalcijevih kanala. Prema njima, kalcij ulazi u akson, što dovodi do mobilizacije vezikula s neurotransmitorom, koji se približava presinaptičkoj membrani, spaja se s njom i oslobađa neurotransmiter u sinapsu.

Mijelinske i glijalne stanice.

Mnoge aksone prekrivene su mijelinskom omotačem, koji se formira ponovljenom zakrivljenom membranom glijalnih stanica. Mijelin se uglavnom sastoji od lipida, što daje karakterističan izgled bijeloj tvari u mozgu i leđnoj moždini. Zahvaljujući mijelinskoj ovojnici, brzina izvođenja akcijskog potencijala duž aksona se povećava, budući da se ioni mogu kretati kroz aksonsku membranu samo na mjestima koja nisu prekrivena mijelinom - tzv. presretanje Ranvier. Između presretanja, impulsi se provode duž mijelinskog omotača kroz električni kabel. Kako otvaranje kanala i prolazak iona kroz njega traje neko vrijeme, uklanjanje stalnog otvaranja kanala i ograničavanje njihovog opsega na mala područja membrana koji nisu pokriveni mijelinom ubrzava provođenje pulseva duž aksona za oko 10 puta.

Samo dio glijalnih stanica sudjeluje u stvaranju mijelinskog omotača živaca (Schwannovih stanica) ili živčanih puteva (oligodendrocita). Mnogo brojnije glijalne stanice (astrociti, mikrogliociti) obavljaju druge funkcije: one formiraju potporni kostur živčanog tkiva, osiguravaju njegove metaboličke potrebe i oporavljaju se od ozljeda i infekcija.

KAKO RADI MOZDAR

Razmotrite jednostavan primjer. Što se događa kada uzmemo olovku na stol? Svjetlo koje se odbija od olovke fokusira se u oko s lećom i usmjereno je prema mrežnici, gdje se pojavljuje slika olovke; percipiraju se odgovarajućim stanicama, iz kojih signal prelazi u glavno osjetilno prijenosno jezgro mozga, smješteno u talamusu (vizualni tuberkule), uglavnom u onom dijelu koji se naziva lateralno genikulirajuće tijelo. Aktivirani su brojni neuroni koji reagiraju na raspodjelu svjetla i tame. Aksoni neurona lateralnog koljenastog tijela odlaze u primarni vizualni korteks, koji se nalazi u okcipitalnom režnju velikih hemisfera. Impulsi koji dolaze iz talamusa u ovaj dio korteksa pretvaraju se u složeni slijed ispuštanja kortikalnih neurona, od kojih neki reagiraju na granicu između olovke i stola, a drugi na kutove olovke, itd. Iz primarnog vizualnog korteksa informacije o aksonima ulaze u asocijativni vizualni korteks, gdje se odvija raspoznavanje uzoraka, u ovom slučaju olovka. Prepoznavanje u ovom dijelu korteksa temelji se na prethodno akumuliranom znanju o vanjskim obrisima objekata.

Planiranje kretanja (tj. Uzimanje olovke) vjerojatno se događa u korteksu frontalnih režnjeva moždane hemisfere. U istom području korteksa nalaze se motorički neuroni koji daju naredbe mišićima šake i prstiju. Pristup ruke na olovku kontrolira vizualni sustav i interoreceptori koji percipiraju položaj mišića i zglobova, a informacija iz koje ulazi u središnji živčani sustav. Kada uzmemo olovku u ruke, receptori na vrhovima prstiju, koji opažaju pritisak, kažu nam da li prsti dobro drže olovku i koliki je napor da ga drže. Ako želimo napisati svoje ime olovkom, moramo aktivirati druge informacije pohranjene u mozgu koje osiguravaju ovaj složeniji pokret, a vizualna kontrola pomoći će povećati njezinu točnost.

U gornjem primjeru, može se vidjeti da izvođenje prilično jednostavne radnje uključuje opsežna područja mozga koja se protežu od korteksa do potkortikalnih područja. Sa složenijim ponašanjem povezanim s govorom ili razmišljanjem, aktiviraju se drugi neuronski krugovi koji pokrivaju još veće područje mozga.

GLAVNI DIJELOVI MOĆI

Mozak se može podijeliti u tri glavna dijela: prednji mozak, moždano deblo i mali mozak. U prednjem mozgu se izlučuju moždane hemisfere, talamus, hipotalamus i hipofiza (jedna od najvažnijih neuroendokrinih žlijezda). Stabla mozga se sastoje od medulla oblongata, ponsa i srednjeg mozga.

Velike polutke

- najveći dio mozga, čineći kod odraslih oko 70% svoje težine. Normalno, hemisfere su simetrične. Međusobno su povezani masivnim snopom aksona (corpus callosum), koji omogućuju razmjenu informacija.

Svaka hemisfera se sastoji od četiri režnja: frontalnog, parijetalnog, temporalnog i okcipitalnog. Korteks frontalnih režnjeva sadrži centre koji reguliraju lokomotornu aktivnost, kao i, vjerojatno, centre za planiranje i predviđanje. U korteksu parijetalnih režnjeva, smještenih iza frontalnog, postoje zone tjelesnih osjeta, uključujući osjećaj dodira i osjećaj zglobova i mišića. Bočno do parijetalnog režnja spaja se temporalna, u kojoj se nalazi primarni slušni korteks, kao i središta govora i druge više funkcije. Stražnji dio mozga zauzima zatiljni režanj koji se nalazi iznad malog mozga; njegova kora sadrži zone vizualnih senzacija.

Područja korteksa koja nisu izravno povezana s regulacijom pokreta ili analizom senzornih informacija nazivaju se asocijativni korteks. U tim specijaliziranim zonama, asocijativne veze se formiraju između različitih područja i dijelova mozga, a informacije koje dolaze iz njih su integrirane. Asocijativni korteks osigurava tako složene funkcije kao što su učenje, pamćenje, govor i razmišljanje.

Subkortikalne strukture.

Ispod korteksa nalaze se brojne važne moždane strukture, ili jezgre, koje su nakupine neurona. To su talamus, bazalni gangliji i hipotalamus. Talamus je glavna jezgra koja prenosi osjetila; on prima informacije od osjetila i zauzvrat ih prosljeđuje do odgovarajućih dijelova osjetilnog korteksa. Postoje i nespecifične zone koje su povezane s gotovo cijelim korteksom i, vjerojatno, osiguravaju procese njegove aktivacije i održavanja budnosti i pažnje. Bazalni gangliji su skup nukleusa (takozvana ljuska, blijeda kugla i kaudatna jezgra) koji su uključeni u regulaciju koordiniranih pokreta (pokretanje i zaustavljanje).

Hipotalamus je malo područje u podnožju mozga koje leži ispod talamusa. Bogat krvlju, hipotalamus je važno središte koje kontrolira homeostatske funkcije tijela. Proizvodi tvari koje reguliraju sintezu i oslobađanje hormona hipofize (vidi također HIPOFIZU). U hipotalamusu postoje mnoge jezgre koje obavljaju specifične funkcije, kao što su regulacija metabolizma vode, raspodjela pohranjene masnoće, tjelesna temperatura, seksualno ponašanje, san i budnost.

Stabla mozga

koji se nalazi na dnu lubanje. Spaja leđnu moždinu s prednjim dijelom mozga, a sastoji se od medulle oblongata, ponsa, sredine i diencefalona.

Kroz srednji i srednji mozak, kao i kroz cijeli trup, prolaze motorne staze koje vode do kičmene moždine, kao i neke osjetljive staze od leđne moždine do nadzemnih dijelova mozga. Ispod srednjeg mozga nalazi se most povezan živčanim vlaknima s malim mozgom. Najniži dio trupa - medula - izravno prelazi u kičmenu moždinu. U medulla oblongata nalaze se centri koji reguliraju aktivnost srca i disanje, ovisno o vanjskim okolnostima, a također kontroliraju krvni tlak, želučanu i crijevnu pokretljivost.

Na razini debla, putovi koji povezuju svaku moždanu hemisferu s malim mozgom sijeku se. Stoga svaka od polutki kontrolira suprotnu stranu tijela i povezana je s suprotnom hemisferom malog mozga.

mali mozak

nalazi se ispod okcipitalnih režnjeva moždane hemisfere. Kroz puteve mosta povezan je s nadzemnim dijelovima mozga. Mali mozak regulira suptilne automatske pokrete, koordinirajući aktivnost različitih mišićnih skupina pri izvođenju stereotipnih ponašajnih činova; također neprestano kontrolira položaj glave, torza i udova, tj. uključeni u održavanje ravnoteže. Prema najnovijim podacima, mali mozak igra vrlo značajnu ulogu u formiranju motoričkih sposobnosti, pomažući pamćenje slijeda pokreta.

Ostali sustavi.

Limbički sustav je široka mreža međusobno povezanih područja mozga koja reguliraju emocionalna stanja, kao i pružaju učenje i pamćenje. Jezgre koje tvore limbički sustav uključuju amigdalu i hipokampus (uključene u temporalni režanj), kao i hipotalamus i takozvanu jezgru. transparentni septum (smješten u potkortikalnim dijelovima mozga).

Retikularna formacija je mreža neurona koji se protežu preko cijelog debla do talamusa i dalje su povezani s opsežnim područjima korteksa. Sudjeluje u regulaciji sna i budnosti, održava aktivno stanje korteksa i pridonosi fokusu pozornosti na određene objekte.

ELEKTRIČNA AKTIVNOST MOZGA

Uz pomoć elektroda smještenih na površini glave ili unesenih u supstancu mozga, moguće je popraviti električnu aktivnost mozga zbog ispuštanja njegovih stanica. Evidencija električne aktivnosti mozga s elektrodama na površini glave naziva se elektroencefalogram (EEG). To ne dopušta bilježenje iscjedka pojedinog neurona. Samo kao rezultat sinkronizirane aktivnosti tisuća ili milijuna neurona, na snimljenoj krivulji pojavljuju se zamjetne oscilacije (valovi).

Uz stalnu registraciju na EEG-u, otkrivaju se cikličke promjene koje odražavaju ukupnu razinu aktivnosti pojedinca. U stanju aktivne budnosti, EEG bilježi ne-ritmičke beta valove niske amplitude. U stanju opuštene budnosti zatvorenih očiju prevladavaju alfa valovi s učestalošću od 7-12 ciklusa u sekundi. Pojava sna ukazuje na pojavu sporih valova visoke amplitude (delta valovi). Tijekom razdoblja sanjanja, beta valovi se ponovno pojavljuju na EEG-u, a na temelju EEG-a može se stvoriti lažni dojam da je osoba budna (otuda pojam "paradoksalni san"). Snovi su često praćeni brzim pokretima očiju (sa zatvorenim kapcima). Stoga se sanjanje naziva i spavanje s brzim pokretima očiju (vidi i SLEEP). EEG vam omogućuje dijagnosticiranje nekih bolesti mozga, osobito epilepsije (vidi EPILEPSY).

Ako registrirate električnu aktivnost mozga tijekom djelovanja određenog stimulusa (vizualnog, slušnog ili taktilnog), možete identificirati tzv. evocirani potencijali - sinkroni ispadi određene skupine neurona, koji nastaju kao odgovor na specifični vanjski stimulus. Proučavanjem evociranih potencijala moguće je razjasniti lokalizaciju moždanih funkcija, posebice povezati funkciju govora s određenim područjima temporalnog i frontalnog režnja. Ova studija također pomaže u procjeni stanja senzornih sustava u bolesnika s oslabljenom osjetljivošću.

MUŠKO NEUROHEMIJA

Najvažniji neurotransmiteri u mozgu su acetilkolin, norepinefrin, serotonin, dopamin, glutamat, gama-aminomaslačna kiselina (GABA), endorfini i enkefalini. Osim ovih dobro poznatih tvari, u mozgu vjerojatno funkcionira velik broj drugih koji još nisu proučavani. Neki neurotransmiteri djeluju samo u određenim dijelovima mozga. Stoga se endorfini i enkefalini nalaze samo u putevima koji provode impulse boli. Drugi medijatori, kao što je glutamat ili GABA, su šire distribuirani.

Djelovanje neurotransmitera.

Kao što je već navedeno, neurotransmiteri, koji djeluju na postsinaptičnu membranu, mijenjaju njegovu vodljivost za ione. Često se to događa putem aktivacije u postsinaptičkom neuronu drugog "medijatorskog" sustava, na primjer, cikličkog adenozin monofosfata (cAMP). Djelovanje neurotransmitera može se modificirati pod utjecajem druge klase neurokemijskih tvari - peptidnih neuromodulatora. Oslobođeni presinaptičkom membranom istodobno s medijatorom, oni imaju sposobnost pojačati ili na drugi način promijeniti učinak medijatora na postsinaptičku membranu.

Nedavno otkriveni endorfinski enkefalinski sustav je važan. Enkefalini i endorfini su mali peptidi koji inhibiraju provođenje impulsa boli vezanjem na receptore u središnjem živčanom sustavu, uključujući u višim zonama korteksa. Ova obitelj neurotransmitera potiskuje subjektivnu percepciju boli.

Psihoaktivni lijekovi

- tvari koje se mogu specifično vezati za određene receptore u mozgu i uzrokovati promjene u ponašanju. Identificirali su nekoliko mehanizama njihova djelovanja. Neki utječu na sintezu neurotransmitera, drugi - na njihovo nakupljanje i oslobađanje iz sinaptičkih vezikula (na primjer, amfetamin uzrokuje brzo oslobađanje norepinefrina). Treći mehanizam je vezanje na receptore i imitiranje djelovanja prirodnog neurotransmitera, na primjer, učinak LSD (dietilamid lizergične kiseline) se objašnjava njegovom sposobnošću vezanja na serotoninske receptore. Četvrti tip djelovanja lijeka je blokada receptora, tj. antagonizam s neurotransmiterima. Takvi široko korišteni antipsihotici kao što su fenotiazini (na primjer, klorpromazin ili aminazin) blokiraju dopaminske receptore i time smanjuju učinak dopamina na postsinaptičke neurone. Konačno, posljednji uobičajeni mehanizam djelovanja je inhibicija inaktivacije neurotransmitera (mnogi pesticidi sprečavaju inaktivaciju acetilkolina).

Odavno je poznato da morfin (pročišćeni proizvod opijskog maka) ima ne samo izražen analgetički (analgetski) učinak, nego i sposobnost da uzrokuje euforiju. Zato se koristi kao lijek. Djelovanje morfina povezano je s njegovom sposobnošću da se veže na receptore na ljudskom endorfin-enkefalinskom sustavu (vidi također DROG). Ovo je samo jedan od mnogih primjera da kemijska tvar različitog biološkog podrijetla (u ovom slučaju biljnog podrijetla) može utjecati na funkcioniranje mozga životinja i ljudi, u interakciji sa specifičnim neurotransmiterskim sustavima. Drugi dobro poznati primjer je kurare, izveden iz tropske biljke i sposoban da blokira acetilkolinske receptore. Indijanci Južne Amerike podmazali su kurare, koristeći svoj paralizirajući učinak povezan s blokadom neuromuskularnog prijenosa.

STUDIJE MOZGA

Istraživanje mozga je teško iz dva glavna razloga. Prvo, mozgu, koji je sigurno zaštićen lubanjom, ne može se pristupiti izravno. Drugo, neuroni mozga se ne regeneriraju, tako da svaka intervencija može dovesti do nepovratnog oštećenja.

Unatoč tim poteškoćama, istraživanje mozga i neki oblici njegovog liječenja (prvenstveno neurokirurške intervencije) poznati su još od antičkih vremena. Arheološki nalazi pokazuju da je već u antici čovjek razbio lubanju da bi dobio pristup mozgu. Posebno intenzivno istraživanje mozga provedeno je tijekom ratnih razdoblja, kada je bilo moguće promatrati razne ozljede glave.

Oštećenje mozga kao posljedica ozljede prednjeg dijela ili ozljede zadobivene u vrijeme mira je vrsta eksperimenta u kojem su pojedini dijelovi mozga uništeni. Budući da je to jedini mogući oblik "eksperimenta" na ljudskom mozgu, još jedna važna metoda istraživanja bili su pokusi na laboratorijskim životinjama. Promatrajući bihevioralne ili fiziološke posljedice oštećenja određene moždane strukture, može se prosuditi njezina funkcija.

Električna aktivnost mozga u pokusnih životinja zabilježena je uporabom elektroda smještenih na površini glave ili mozga ili uvedenih u supstancu mozga. Tako je moguće odrediti aktivnost malih skupina neurona ili pojedinih neurona, kao i identificirati promjene u ionskim tokovima preko membrane. Pomoću stereotaktičke naprave koja vam omogućava da uđete u elektrodu na određenoj točki u mozgu, ispituju se njezini nedostupni dubinski dijelovi.

Drugi pristup je uklanjanje malih područja živog tkiva mozga, nakon čega se njegovo postojanje održava kao kriška smještena u hranjivom mediju, ili su stanice odvojene i proučavane u staničnim kulturama. U prvom slučaju možete istražiti interakciju neurona, u drugom - aktivnost pojedinačnih stanica.

Kada se proučava električna aktivnost pojedinih neurona ili njihovih skupina u različitim područjima mozga, početna aktivnost se obično prvi put bilježi, zatim se određuje učinak određenog učinka na funkciju stanica. Prema drugoj metodi, električni impuls se nanosi kroz implantiranu elektrodu kako bi se umjetno aktivirale najbliže neurone. Tako možete proučavati učinke određenih dijelova mozga na druga područja. Ova metoda električne stimulacije bila je korisna u proučavanju sustava aktiviranja matičnih stanica koji prolaze kroz srednji mozak; također se pribjegava kada se pokušava shvatiti kako se procesi učenja i pamćenja odvijaju na sinaptičkoj razini.

Prije sto godina postalo je jasno da su funkcije lijeve i desne hemisfere različite. Francuski kirurg P. Brock, koji je promatrao bolesnike s cerebrovaskularnom nesrećom (moždani udar), otkrio je da su samo bolesnici s oštećenjem lijeve hemisfere imali poremećaj govora. Daljnje studije specijalizacije hemisfera nastavljene su drugim metodama, primjerice EEG snimanjem i evociranim potencijalima.

Posljednjih godina korištene su složene tehnologije za dobivanje slika (vizualizacija) mozga. Dakle, kompjutorska tomografija (CT) je revolucionirala kliničku neurologiju, dopuštajući da se dobije in vivo detaljna (slojevita) slika moždanih struktura. Druga metoda snimanja - pozitronska emisijska tomografija (PET) - daje sliku metaboličke aktivnosti mozga. U ovom slučaju, u čovjeka se uvodi kratkotrajni radioizotop koji se akumulira u različitim dijelovima mozga, i što je veći, njihova metabolička aktivnost je veća. Uz pomoć PET-a, također je pokazano da su govorne funkcije većine ispitanika povezane s lijevom hemisferom. Budući da mozak radi pomoću velikog broja paralelnih struktura, PET daje takve informacije o moždanim funkcijama koje se ne mogu dobiti s pojedinačnim elektrodama.

Istraživanje mozga u pravilu se provodi kombinacijom metoda. Na primjer, američki neurobiolog R. Sperri, sa zaposlenicima, koristio se kao postupak liječenja za rezanje corpus callosum (snop aksona koji povezuje obje hemisfere) kod nekih bolesnika s epilepsijom. Nakon toga, kod ovih bolesnika s "podijeljenim" mozgom istraživana je hemisferna specijalizacija. Utvrđeno je da je za govorne i druge logičke i analitičke funkcije odgovorna dominantna dominantna (obično lijeva) hemisfera, dok nedominantna hemisfera analizira prostorno-vremenske parametre vanjskog okruženja. Dakle, aktivira se kad slušamo glazbu. Mozaička slika aktivnosti mozga sugerira da postoje brojna specijalizirana područja unutar korteksa i subkortikalnih struktura; istovremena aktivnost tih područja potvrđuje koncept mozga kao računalnog uređaja s paralelnom obradom podataka.

S pojavom novih metoda istraživanja, ideje o moždanim funkcijama vjerojatno će se promijeniti. Upotreba uređaja koji nam omogućuju da dobijemo "mapu" metaboličke aktivnosti različitih dijelova mozga, kao i upotrebu molekularno genetičkih pristupa, trebali bi produbiti naše znanje o procesima koji se odvijaju u mozgu. Vidi također neuropsihologija.

USPOREDNA ANATOMIJA

Kod različitih vrsta kralježnjaka, mozak je izuzetno sličan. Ako uspoređujemo na razini neurona, nalazimo izrazitu sličnost karakteristika kao što se koriste neurotransmiteri, fluktuacije u koncentracijama iona, tipove stanica i fiziološke funkcije. Temeljne razlike otkrivene su samo u usporedbi s beskralježnjacima. Neuronibralni neuroni su mnogo veći; često su međusobno povezani ne kemijskim nego električnim sinapama, koje se rijetko nalaze u ljudskom mozgu. U živčanom sustavu beskralježnjaka otkriveni su neki neurotransmiteri koji nisu karakteristični za kralježnjake.

Među kralježnjacima, razlike u strukturi mozga uglavnom se odnose na odnos pojedinih struktura. Procjenjujući sličnosti i razlike u mozgu riba, vodozemaca, gmazova, ptica, sisavaca (uključujući i ljude) moguće je izvesti nekoliko općih obrazaca. Prvo, sve ove životinje imaju istu strukturu i funkcije neurona. Drugo, struktura i funkcije leđne moždine i moždanog debla vrlo su slične. Treće, evolucija sisavaca popraćena je naglašenim povećanjem kortikalnih struktura koje dosežu maksimalni razvoj kod primata. Kod vodozemaca korteks predstavlja samo mali dio mozga, dok je kod ljudi dominantna struktura. Vjeruje se, međutim, da su principi funkcioniranja mozga svih kralježnjaka gotovo isti. Razlike su određene brojem interneuronskih veza i interakcija, što je viši, to je mozak složeniji. Vidi također KOMPARATIVNA ANATOMIJA.

GLAVNI DIJELOVI MOĆI

Mozak se može podijeliti u tri glavna dijela: prednji mozak, moždano deblo i mali mozak. U prednjem mozgu se izlučuju moždane hemisfere, talamus, hipotalamus i hipofiza (jedna od najvažnijih neuroendokrinih žlijezda). Stabla mozga se sastoje od medulla oblongata, ponsa i srednjeg mozga. Glavne su moždane hemisfere, koje čine oko 70% svoje težine kod odraslih. Normalno, hemisfere su simetrične. Međusobno su povezani masivnim snopom aksona (corpus callosum), koji omogućuju razmjenu informacija.

LJUDSKI MOZAK karakterizira visoki razvoj velikih polutki; oni čine više od dvije trećine njegove mase i pružaju takve mentalne funkcije kao što su razmišljanje, učenje, pamćenje. Druge velike strukture mozga prikazane su na ovom presjeku: cerebelum, medula, pons i srednji mozak.

Glavne su moždane hemisfere, koje čine oko 70% svoje težine kod odraslih. Normalno, hemisfere su simetrične. Međusobno su povezani masivnim snopom aksona (corpus callosum), koji omogućuju razmjenu informacija.

Svaka hemisfera se sastoji od četiri režnja: frontalnog, parijetalnog, temporalnog i okcipitalnog. Korteks frontalnih režnjeva sadrži centre koji reguliraju lokomotornu aktivnost, kao i, vjerojatno, centre za planiranje i predviđanje. U korteksu parijetalnih režnjeva, smještenih iza frontalnog, postoje zone tjelesnih osjeta, uključujući osjećaj dodira i osjećaj zglobova i mišića. Bočno do parijetalnog režnja spaja se temporalna, u kojoj se nalazi primarni slušni korteks, kao i središta govora i druge više funkcije. Stražnji dio mozga zauzima zatiljni režanj koji se nalazi iznad malog mozga; njegova kora sadrži zone vizualnih senzacija.

CORA MOZGA pokriva površinu velikih polutki sa svojim brojnim brazdama i konvolucijama, zbog čega se značajno povećava područje korteksa. Postoje asocijativne zone korteksa, kao i senzorni i motorni korteks - područja u kojima su koncentrirani neutroni, koji inerviraju različite dijelove tijela.

Područja korteksa koja nisu izravno povezana s regulacijom pokreta ili analizom senzornih informacija nazivaju se asocijativni korteks. U tim specijaliziranim zonama, asocijativne veze se formiraju između različitih područja i dijelova mozga, a informacije koje dolaze iz njih su integrirane. Asocijativni korteks osigurava tako složene funkcije kao što su učenje, pamćenje, govor i razmišljanje. Subkortikalne strukture. Ispod korteksa nalaze se brojne važne moždane strukture, ili jezgre, koje su nakupine neurona. To su talamus, bazalni gangliji i hipotalamus. Talamus je glavna jezgra koja prenosi osjetila; on prima informacije od osjetila i zauzvrat ih prosljeđuje do odgovarajućih dijelova osjetilnog korteksa. Postoje i nespecifične zone koje su povezane s gotovo cijelim korteksom i, vjerojatno, osiguravaju procese njegove aktivacije i održavanja budnosti i pažnje. Bazalni gangliji su skup nukleusa (takozvana ljuska, blijeda kugla i kaudatna jezgra) koji su uključeni u regulaciju koordiniranih pokreta (pokretanje i zaustavljanje). Hipotalamus je malo područje u podnožju mozga koje leži ispod talamusa. Bogat krvlju, hipotalamus je važno središte koje kontrolira homeostatske funkcije tijela. Proizvodi tvari koje reguliraju sintezu i oslobađanje hormona hipofize. U hipotalamusu postoje mnoge jezgre koje obavljaju specifične funkcije, kao što su regulacija metabolizma vode, raspodjela pohranjene masnoće, tjelesna temperatura, seksualno ponašanje, san i budnost. Stablo mozga nalazi se u podnožju lubanje. Spaja leđnu moždinu s prednjim dijelom mozga, a sastoji se od medulle oblongata, ponsa, sredine i diencefalona. Kroz srednji i srednji mozak, kao i kroz cijeli trup, prolaze motorne staze koje vode do kičmene moždine, kao i neke osjetljive staze od leđne moždine do nadzemnih dijelova mozga. Ispod srednjeg mozga nalazi se most povezan živčanim vlaknima s malim mozgom. Najniži dio trupa - medula - izravno prelazi u kičmenu moždinu. U medulla oblongata nalaze se centri koji reguliraju aktivnost srca i disanje, ovisno o vanjskim okolnostima, a također kontroliraju krvni tlak, želučanu i crijevnu pokretljivost. Na razini debla, putovi koji povezuju svaku moždanu hemisferu s malim mozgom sijeku se. Stoga svaka od polutki kontrolira suprotnu stranu tijela i povezana je s suprotnom hemisferom malog mozga. Mali mozak nalazi se ispod okcipitalnih režnjeva velikih polutki. Kroz puteve mosta povezan je s nadzemnim dijelovima mozga. Mali mozak regulira suptilne automatske pokrete, koordinirajući aktivnost različitih mišićnih skupina pri izvođenju stereotipnih ponašajnih činova; također neprestano kontrolira položaj glave, torza i udova, tj. uključeni u održavanje ravnoteže. Prema najnovijim podacima, mali mozak igra vrlo značajnu ulogu u formiranju motoričkih sposobnosti, pomažući pamćenje slijeda pokreta.

Stablo mozga nalazi se u podnožju lubanje. Spaja leđnu moždinu s prednjim dijelom mozga, a sastoji se od medulle oblongata, ponsa, sredine i diencefalona.

Kroz srednji i srednji mozak, kao i kroz cijeli trup, prolaze motorne staze koje vode do kičmene moždine, kao i neke osjetljive staze od leđne moždine do nadzemnih dijelova mozga. Ispod srednjeg mozga nalazi se most povezan živčanim vlaknima s malim mozgom. Najniži dio trupa - medula - izravno prelazi u kičmenu moždinu. U medulla oblongata nalaze se centri koji reguliraju aktivnost srca i disanje, ovisno o vanjskim okolnostima, a također kontroliraju krvni tlak, želučanu i crijevnu pokretljivost.

Na razini debla, putovi koji povezuju svaku moždanu hemisferu s malim mozgom sijeku se. Stoga svaka od polutki kontrolira suprotnu stranu tijela i povezana je s suprotnom hemisferom malog mozga.

Mali mozak nalazi se ispod okcipitalnih režnjeva velikih polutki. Kroz puteve mosta povezan je s nadzemnim dijelovima mozga. Mali mozak regulira suptilne automatske pokrete, koordinirajući aktivnost različitih mišićnih skupina pri izvođenju stereotipnih ponašajnih činova; također neprestano kontrolira položaj glave, torza i udova, tj. uključeni u održavanje ravnoteže. Prema najnovijim podacima, mali mozak igra vrlo značajnu ulogu u formiranju motoričkih sposobnosti, pomažući pamćenje slijeda pokreta.

Ostali sustavi. Limbički sustav je široka mreža međusobno povezanih područja mozga koja reguliraju emocionalna stanja, kao i pružaju učenje i pamćenje. Jezgre koje tvore limbički sustav uključuju amigdalu i hipokampus (uključene u temporalni režanj), kao i hipotalamus i takozvanu jezgru. transparentni septum (smješten u potkortikalnim dijelovima mozga). Retikularna formacija je mreža neurona koji se protežu preko cijelog debla do talamusa i dalje su povezani s opsežnim područjima korteksa. Sudjeluje u regulaciji sna i budnosti, održava aktivno stanje korteksa i pridonosi fokusu pozornosti na određene objekte.

Glavni dijelovi mozga

Mozak se može podijeliti u tri glavna dijela: prednji mozak, moždano deblo i mali mozak. U prednjem mozgu se izlučuju moždane hemisfere, talamus, hipotalamus i hipofiza (jedna od najvažnijih neuroendokrinih žlijezda). Stabla mozga se sastoje od medulla oblongata, ponsa i srednjeg mozga.

Glavne su moždane hemisfere, koje čine oko 70% svoje težine kod odraslih. Normalno, hemisfere su simetrične. Međusobno su povezani masivnim snopom aksona (corpus callosum), koji omogućuju razmjenu informacija.

Svaka hemisfera se sastoji od četiri režnja: frontalnog, parijetalnog, temporalnog i okcipitalnog. Korteks frontalnih režnjeva sadrži centre koji reguliraju lokomotornu aktivnost, kao i, vjerojatno, centre za planiranje i predviđanje. U korteksu parijetalnih režnjeva, smještenih iza frontalnog, postoje zone tjelesnih osjeta, uključujući osjećaj dodira i osjećaj zglobova i mišića. Bočno do parijetalnog režnja spaja se temporalna, u kojoj se nalazi primarni slušni korteks, kao i središta govora i druge više funkcije. Stražnji dio mozga zauzima zatiljni režanj koji se nalazi iznad malog mozga; njegova kora sadrži zone vizualnih senzacija.

Područja korteksa koja nisu izravno povezana s regulacijom pokreta ili analizom senzornih informacija nazivaju se asocijativni korteks. U tim specijaliziranim zonama, asocijativne veze se formiraju između različitih područja i dijelova mozga, a informacije koje dolaze iz njih su integrirane. Asocijativni korteks osigurava tako složene funkcije kao što su učenje, pamćenje, govor i razmišljanje.

Subkortikalne strukture. Ispod korteksa nalaze se brojne važne moždane strukture, ili jezgre, koje su nakupine neurona. To su talamus, bazalni gangliji i hipotalamus. Talamus je glavna jezgra koja prenosi osjetila; on prima informacije od osjetila i zauzvrat ih prosljeđuje do odgovarajućih dijelova osjetilnog korteksa. Postoje i nespecifične zone koje su povezane s gotovo cijelim korteksom i, vjerojatno, osiguravaju procese njegove aktivacije i održavanja budnosti i pažnje. Bazalni gangliji su skup nukleusa (takozvana ljuska, blijeda kugla i kaudatna jezgra) koji su uključeni u regulaciju koordiniranih pokreta (pokretanje i zaustavljanje).

Hipotalamus je malo područje u podnožju mozga koje leži ispod talamusa. Bogat krvlju, hipotalamus je važno središte koje kontrolira homeostatske funkcije tijela. Proizvodi tvari koje reguliraju sintezu i oslobađanje hormona hipofize. U hipotalamusu postoje mnoge jezgre koje obavljaju specifične funkcije, kao što su regulacija metabolizma vode, raspodjela pohranjene masnoće, tjelesna temperatura, seksualno ponašanje, san i budnost.

Stablo mozga nalazi se u podnožju lubanje. Spaja leđnu moždinu s prednjim dijelom mozga, a sastoji se od medulle oblongata, ponsa, sredine i diencefalona.

Kroz srednji i srednji mozak, kao i kroz cijeli trup, prolaze motorne staze koje vode do kičmene moždine, kao i neke osjetljive staze od leđne moždine do nadzemnih dijelova mozga. Ispod srednjeg mozga nalazi se most povezan živčanim vlaknima s malim mozgom. Najniži dio trupa - medula - izravno prelazi u kičmenu moždinu. U medulla oblongata nalaze se centri koji reguliraju aktivnost srca i disanje, ovisno o vanjskim okolnostima, a također kontroliraju krvni tlak, želučanu i crijevnu pokretljivost.

Na razini debla, putovi koji povezuju svaku moždanu hemisferu s malim mozgom sijeku se. Stoga svaka od polutki kontrolira suprotnu stranu tijela i povezana je s suprotnom hemisferom malog mozga.

Mali mozak nalazi se ispod okcipitalnih režnjeva velikih polutki. Kroz puteve mosta povezan je s nadzemnim dijelovima mozga. Mali mozak regulira suptilne automatske pokrete, koordinirajući aktivnost različitih mišićnih skupina pri izvođenju stereotipnih ponašajnih činova; također neprestano kontrolira položaj glave, torza i udova, tj. uključeni u održavanje ravnoteže. Prema najnovijim podacima, mali mozak igra vrlo značajnu ulogu u formiranju motoričkih sposobnosti, pomažući pamćenje slijeda pokreta.

Ostali sustavi. Limbički sustav je široka mreža međusobno povezanih područja mozga koja reguliraju emocionalna stanja, kao i pružaju učenje i pamćenje. Jezgre koje tvore limbički sustav uključuju amigdalu i hipokampus (uključene u temporalni režanj), kao i hipotalamus i takozvanu jezgru. transparentni septum (smješten u potkortikalnim dijelovima mozga).

Retikularna formacija je mreža neurona koji se protežu preko cijelog debla do talamusa i dalje su povezani s opsežnim područjima korteksa. Sudjeluje u regulaciji sna i budnosti, održava aktivno stanje korteksa i pridonosi fokusu pozornosti na određene objekte.

Glavni dijelovi mozga

Ljudski mozak može se podijeliti u tri glavna dijela:

Siva i bijela tvar

Supstanca mozga sastoji se od sivih i bijelih područja. Siva područja su nakupine neurona. Ima ih više od 100 milijardi, a bave se obradom informacija. Bijela tvar mozga je akson. Preko njih se prenose informacije koje obrađuju neuroni. Siva tvar je također koncentrirana u unutarnjem dijelu leđne moždine.

Prehrana mozga

Za normalan rad, mozak treba prehranu. Za razliku od drugih stanica u tijelu, moždane stanice mogu obrađivati ​​samo glukozu. Mozgu je također potreban kisik. Bez nje, mitohondriji neće moći proizvesti dovoljno energije. No, budući da krv opskrbljuje mozak glukozom i kisikom, ništa ne smije ometati normalan protok krvi da bi se održalo zdravlje mozga. Ako krv prestane teći u mozak, nakon deset sekundi, osoba gubi svijest. Iako je težina mozga samo 2,5% tjelesne težine, ona neprestano, danju i noću, prima 20% krvi koja cirkulira u tijelu i odgovarajuću količinu kisika.

Cerebralni korteks

Duboko udubljenje dijeli mozak na dvije hemisfere.

Moždana kora je sloj sive tvari debljine između 1 i 5 mm koji pokriva moždane hemisfere.

Brazde i vijuge povećavaju površinu korteksa bez povećanja volumena lubanje. Tako je kod ljudi oko 2/3 površine cijelog korteksa duboko u brazdama.

Dvije se hemisfere nazivaju "nova kore". Kroz tu strukturu čovjek je razvio jezik, misao, svijest i maštu. hemisfere su simetrične. Polutke su međusobno povezane masivnim snopom aksona - corpus callosum, koji omogućuje razmjenu informacija.

Svaka hemisfera se sastoji od četiri režnja. Nazivaju se:

Svaka dionica obavlja određene funkcije. Prednji režanj uglavnom kontrolira kretanje. Parijetalni režanj obrađuje informacije iz osjetila, osigurava dodir, temperaturu, bol i odgovoran je za orijentaciju u prostoru. Okcipitalni režanj osigurava vid, temporalni režanj služi sluhu. Asocijativni korteks je specijalizirana zona zbog koje se izvode tako složene funkcije kao što su učenje, pamćenje, govor i razmišljanje.

Specijalizirani centri za mozak

Postoje mnogi centri u mozgu koji su specijalizirani za specifične zadatke.

Prvi funkcionalni centar moždane kore otkriven je 1861. godine francuskim znanstvenikom Paulom Brockom (1824. - 1880.). Tijekom obdukcije istražio je mozak osobe koja je zbog nesreće potpuno izgubila moć govora. Savršeno je razumio što mu se govori, ali je izgubio sposobnost izgovaranja riječi. Broca je skrenuo pozornost na činjenicu da je oštećena lijeva frontalna zona mozga. Ovo mjesto se zove područje Broca.

Nešto kasnije, njemački znanstvenik Karl Vérnike (1848-1905) otkrio je još jedan funkcionalni centar odgovoran za prepoznavanje riječi. Kada je oštećen, osoba ne može razumjeti ono što je čuo. Također je dobio ime svog otkrivača - Wernicke zone.

Već su otkrili više od pedeset funkcionalnih centara mozga.

Limbički sustav

Unutar hemisfera nalaze se skriveni dijelovi mozga koji su važni za njegovo potpuno funkcioniranje. U samom je središtu talamus. Sve vizualne, okusne, slušne i taktilne informacije prolaze kroz nju prije nego stignu do kore. Nešto niži je hipotalamus. Pomaže osobi da osjeća glad i žeđ, osjeća emocije. Ispod je amigdala, zbog koje osoba osjeća osjećaj straha. Ali to je također vrlo važno za proces učenja i pamćenja.

Hipokampus podsjeća na oblik morskog konjica (latinski hippocampus - morski konj), a također igra ključnu ulogu u pamćenju i emocijama.

Sva ta tijela obično se kombiniraju pod općim pojmom "limbički sustav".

Mali mozak - mini-mozak unutar mozga

Mali mozak se nalazi u stražnjem dijelu mozga. Podsjeća na mozak u minijaturi, budući da je podijeljen na dvije polutke, prekrivene gyrusom.

Mali mozak je odgovoran za motornu koordinaciju i ravnotežu.

Osobe s ozljedama malog mozga nisu paralizirane, ali gube sposobnost održavanja ravnoteže i potpunog kretanja.

Stabla mozga

Stablo mozga nalazi se u podnožju lubanje. Spaja leđnu moždinu s prednjim mozgom. Najniži dio trupa izravno ulazi u dorzalni dio.

Stabla mozga sadrže brojne centre senzornih i motoričkih putova. Deblo regulira takve vitalne funkcije kao što su disanje i cirkulacija krvi.

Na razini debla, putovi koji povezuju svaku moždanu hemisferu s malim mozgom sijeku se. Stoga svaka od polutki kontrolira suprotnu stranu tijela i povezana je s suprotnom hemisferom malog mozga.

Asimetrija mozga

Dr. Roger Sperry (1913-1994), koji je dobio Nobelovu nagradu, najprije je objasnio specifičnost funkcioniranja dva režnja mozga.

Lijeva polovica mozga odgovorna je za logičke operacije, brojanje, sekvenciranje, dok desna hemisfera kontrolira inicijativu i kreativnost.

Desna hemisfera čini sve odjednom, holistički, traži i uspostavlja veze instinktivno, intuitivno, preferira slike, pomaže nam u razumijevanju metafore i percepciji humora. Lijevi dio preferira sekvence, ističe detalje, pokušava klasificirati informacije, izvući konkretne zaključke, uspostaviti uzročno-posljedične veze, voli gramatiku i riječi.

Lijevo pojednostavljuje svijet tako da ga se može lako analizirati i na njega utjecati. Desna hemisfera zahvaća svijet kakav jest

Bez desnog režnja mozga, osoba bi se pretvorila u računalo, u stroj za brojanje. Pokušaji znanstvenika da stvore umjetnu inteligenciju završili su neuspjehom jer su modelirali samo lijevu hemisferu mozga.

Obje hemisfere obavljaju jednako važne funkcije.

Desna hemisfera mozga kontrolira lijevu polovicu tijela, a lijevu - desnu polovicu.

1. Koja je razlika između protoka struje kroz metalni vodič i prolaza živčanog impulsa?

2. Zašto se električni impuls ne može prenositi između neurona?

3. Zašto ljudski mozak, koji ima masu od oko 1,5 kg, teži samo 50 - 100 g?

Literatura za seminar na temu broj 11 "Neurofiziologija"

Likhin A.F. Koncepti moderne prirodne znanosti. M.: Prospect, 2004. str 247 - 249.

Glebov R.N. Prijenos mozga, sinapsi i informacija. M.: "Znanje", 1984.

Gorelov A. A. Pojmovi moderne znanosti. M.: Center, 1998., 130-136.

Latash L.P., Astakhova VG Tajne budnosti i sna. M.: "Znanje", 1978.

Sergeev B. F. Asimetrija mozga. M.: "Znanje", 1981.

Najvažniji dio mozga

Uštedite vrijeme i ne gledajte oglase uz Knowledge Plus

Uštedite vrijeme i ne gledajte oglase uz Knowledge Plus

Odgovor

Odgovor je dan

Razina2001

Cerebralni korteks

Povežite Knowledge Plus da biste pristupili svim odgovorima. Brzo, bez reklama i prekida!

Ne propustite važno - povežite Knowledge Plus da biste odmah vidjeli odgovor.

Pogledajte videozapis da biste pristupili odgovoru

Oh ne!
Pogledi odgovora su gotovi

Povežite Knowledge Plus da biste pristupili svim odgovorima. Brzo, bez reklama i prekida!

Ne propustite važno - povežite Knowledge Plus da biste odmah vidjeli odgovor.

Mozak - osnova skladnog rada tijela

Čovjek je složeni organizam koji se sastoji od mnogih organa ujedinjenih u jednu mrežu, čiji je rad precizno i ​​besprijekorno reguliran. Glavna funkcija reguliranja rada tijela je središnji živčani sustav (CNS). To je složen sustav koji uključuje nekoliko organa i završetke perifernih živaca i receptore. Najvažniji organ ovog sustava je mozak - složeni računalni centar odgovoran za pravilno funkcioniranje cijelog organizma.

Opće informacije o strukturi mozga

Pokušavaju ga dugo proučavati, ali znanstvenici cijelo vrijeme nisu bili u mogućnosti točno i nedvosmisleno odgovoriti na 100% na pitanje što je to i kako ovo tijelo funkcionira. Proučavane su mnoge funkcije, za neke postoje samo nagađanja.

Vizualno se može podijeliti u tri glavna dijela: moždano deblo, mali mozak i moždane hemisfere. Međutim, ova podjela ne odražava cjelokupnu svestranost funkcioniranja ovog tijela. Detaljnije, ovi dijelovi su podijeljeni u dijelove koji su odgovorni za određene funkcije tijela.

Dugogodišnji odjel

Središnji živčani sustav osobe neodvojiv je mehanizam. Glatki prijelazni element iz kralješnice središnjeg živčanog sustava je duguljasti dio. Vizualno se može prikazati kao krnji stožac s bazom na vrhu ili malom glavom luka s izbočinama koje se razlikuju od nje - živčanim tkivima koja se spajaju s središnjim dijelom.

Postoje tri različite funkcije odjela - senzorni, refleksni i dirigentski. Njezina je zadaća kontrolirati glavne zaštitne (refleks refleksije, disanja, kašlja) i nesvjesnih refleksa (otkucaji srca, disanje, treptanje, salivacija, izlučivanje želučanog soka, gutanje, metabolizam). Uz to, medula je odgovorna za osjećaje kao što su ravnoteža i koordinacija pokreta.

srednji mozak

Sljedeći odjel odgovoran za komunikaciju s leđnom moždinom je srednji. Ali glavna funkcija ovog odjela je obrada živčanih impulsa i korekcija radne sposobnosti slušnog aparata i ljudskog vizualnog centra. Nakon obrade primljenih informacija, ova formacija daje impulsne signale da reagiraju na podražaje: okreće glavu prema zvuku, mijenjajući položaj tijela u slučaju opasnosti. Dodatne funkcije uključuju regulaciju tjelesne temperature, tonus mišića, uzbuđenje.

Srednji odjel ima složenu strukturu. Postoje 4 skupine živčanih stanica - brežuljci, od kojih su dva odgovorna za vizualnu percepciju, druga dva za sluh. Živčane nakupine istog živčanog tkiva, vizualno slične nogama, međusobno su povezane i s drugim dijelovima mozga i leđne moždine. Ukupna veličina segmenta u odrasloj dobi ne prelazi 2 cm.

Srednji mozak

Još složenija po strukturi i funkciji odjela. Anatomski, diencephalon je podijeljen u nekoliko dijelova: hipofiza. To je mali privjesak mozga, koji je odgovoran za izlučivanje potrebnih hormona i regulaciju endokrinog sustava tijela.

Hipofiza je uvjetno podijeljena u nekoliko dijelova, od kojih svaki obavlja svoju funkciju:

  • Adenohipofiza - regulator perifernih endokrinih žlijezda.
  • Neurohipofiza je povezana s hipotalamusom i akumulira hormone koje proizvodi.

hipotalamus

Malo područje u mozgu, čija je najvažnija funkcija kontrola brzine otkucaja srca i krvnog tlaka u krvnim žilama. Osim toga, hipotalamus je odgovoran za dio emocionalnih manifestacija stvarajući potrebne hormone za suzbijanje stresnih situacija. Još jedna važna funkcija je kontrola gladi, sitosti i žeđi. Povrh toga, hipotalamus je središte seksualne aktivnosti i užitka.

epithalamus

Glavni zadatak ovog odjela je regulacija dnevnog biološkog ritma. Uz pomoć proizvedenih hormona utječe na trajanje spavanja noću i normalnu budnost tijekom dana. Upravo epithalamus prilagođava naše tijelo uvjetima "svjetlosnog dana" i dijeli ljude na "sove" i "larks". Drugi zadatak epithalamusa je regulacija metabolizma u tijelu.

talamus

Ova je formacija vrlo važna za ispravnu svijest o svijetu oko nas. Talamus je odgovoran za obradu i interpretaciju impulsa iz perifernih receptora. Podaci iz živčanog gledatelja, slušnog pomagala, receptora tjelesne temperature, olfaktornih receptora i bolnih točaka konvergiraju se u dani centar za obradu informacija.

Natrag odjeljak

Kao i prethodne podjele, stražnji mozak uključuje podsekcije. Glavni dio je mali mozak, drugi je pons, mali jastuk živčanog tkiva koji povezuje mali mozak s drugim odjelima i krvnim žilama koje hrane mozak.

mali mozak

U svom obliku, mali mozak podsjeća na moždane hemisfere, sastoji se od dva dijela, povezana "crvom" - kompleksom provodnog živčanog tkiva. Glavne hemisfere su sastavljene od jezgre živčanih stanica ili "sive tvari", sastavljene kako bi povećale površinu i volumen u naboru. Ovaj dio se nalazi u stražnjem dijelu lubanje i potpuno zauzima njegovu cijelu stražnju jama.

Glavna funkcija ovog odjela je koordinacija motoričkih funkcija. Međutim, mali mozak ne pokreće kretanje ruku ili nogu - on samo kontrolira točnost i jasnoću, redoslijed kojim se izvode pokreti, motoričke sposobnosti i držanje.

Drugi važan zadatak je regulacija kognitivnih funkcija. To su: pažnja, razumijevanje, svijest o jeziku, regulacija osjećaja straha, osjećaj za vrijeme, svijest o prirodi užitka.

Moždane hemisfere

Glavnina i volumen mozga padaju na konačnu podjelu ili na velike hemisfere. Postoje dvije polutke: lijevo - većina je odgovorna za analitičko razmišljanje i govorne funkcije tijela, a desno - čiji je glavni zadatak apstraktno razmišljanje i svi procesi povezani s kreativnošću i interakcijom s vanjskim svijetom.

Struktura konačnog mozga

Moždane hemisfere su glavna "procesna jedinica" središnjeg živčanog sustava. Unatoč različitoj "specijalizaciji" ovih segmenata međusobno se nadopunjuju.

Moždane hemisfere su složeni sustav interakcije između jezgara živčanih stanica i neurokontaktnih tkiva koja povezuju glavna područja mozga. Gornja površina, nazvana korteks, sastoji se od velikog broja živčanih stanica. To se naziva siva tvar. U svjetlu općeg evolucijskog razvoja, korteks je najmlađa i najrazvijenija formacija središnjeg živčanog sustava, a najveći razvoj postignut je kod ljudi. Ona je odgovorna za formiranje viših neuro-psiholoških funkcija i složenih oblika ljudskog ponašanja. Kako bi se povećala korisna površina, površina hemisfera se skuplja u nabore ili gyrus. Unutarnja površina moždane hemisfere sastoji se od bijele tvari - procesa živčanih stanica odgovornih za provođenje nervnih impulsa i komunikacije s ostalim segmentima CNS-a.

S druge strane, svaka od polutki je konvencionalno podijeljena na 4 dijela ili režnjeve: zatiljnu, parijetalnu, vremensku i frontalnu.

Zatiljne režnjeve

Glavna funkcija ovog uvjetnog dijela je obrada neuronskih signala iz vizualnih centara. Ovdje nastaju uobičajeni pojmovi boje, volumena i drugih trodimenzionalnih svojstava vidljivog objekta od svjetlosnih podražaja.

Parijetalni režnjevi

Ovaj segment odgovoran je za pojavu boli i obradu signala iz tjelesnih termalnih receptora. Pri tome se njihov zajednički posao završava.

Za strukturiranje informacijskih paketa odgovoran je parijetalni režanj lijeve hemisfere, koji vam omogućuje rad s logičkim operatorima, čitanje i čitanje. I ovo područje tvori svijest o cijeloj strukturi ljudskog tijela, definiciji desnog i lijevog dijela, koordinaciji pojedinih pokreta u jednu cjelinu.

Desna se bavi sintezom informacijskih tokova koje generiraju okcipitalni režnjevi i lijevi parietalni. Na ovom mjestu formira se opća trodimenzionalna slika percepcije okoline, prostornog položaja i orijentacije, pogrešnog proračuna perspektive.

Vremenski režnjevi

Ovaj segment se može usporediti s "tvrdim diskom" računala - dugoročno pohranjivanje informacija. Ovdje se pohranjuju sva sjećanja i znanja osobe prikupljene tijekom njegova života. Desni temporalni režanj odgovoran je za vizualnu memoriju - memoriju slika. Lijevo - ovdje se pohranjuju svi pojmovi i opisi pojedinih objekata, odvija se interpretacija i usporedba slika, njihova imena i karakteristike.

Što se tiče prepoznavanja govora, u taj postupak su uključeni oba temporalna režnja. Međutim, njihove su funkcije različite. Ako je lijevi režanj dizajniran tako da prepozna značenje riječi koje se čuju, tada desni desni dio tumači intonacijsku boju i njezinu usporedbu s govornikom. Još jedna funkcija ovog dijela mozga je percepcija i dekodiranje živčanih impulsa koji dolaze iz mirisnih receptora nosa.

Frontalni režnjevi

Ovaj dio je odgovoran za takva svojstva naše svijesti kao kritičko samopoštovanje, adekvatnost ponašanja, svijest o stupnju besmislenosti djelovanja, raspoloženju. Opće ponašanje osobe također ovisi o pravilnom djelovanju frontalnih režnjeva mozga, poremećaji dovode do neadekvatnosti i asocijalnosti djelovanja. Proces učenja, ovladavanje vještinama, stjecanje uvjetovanih refleksa ovisi o pravilnom radu ovog dijela mozga. To se odnosi i na stupanj aktivnosti i znatiželje osobe, na njegovu inicijativu i svijest o odlukama.

Kako bi se sistematizirale funkcije GM-a, one su prikazane u tablici:

Kontrolirajte nesvjesne reflekse.

Kontrola ravnoteže i koordinacija pokreta.

Regulacija tjelesne temperature, tonus mišića, uznemirenost, spavanje.

Svijest o svijetu, obrada i interpretacija impulsa iz perifernih receptora.

Obrada informacija iz perifernih receptora

Kontrolirajte otkucaje srca i krvni tlak. Proizvodnja hormona. Kontrolirajte stanje gladi, žeđi, sitosti.

Regulacija dnevnog biološkog ritma, regulacija metabolizma u tijelu.

Regulacija kognitivnih funkcija: pažnja, razumijevanje, svijest o jeziku, regulacija osjećaja straha, osjećaj vremena, svijest o prirodi užitka.

Tumačenje osjećaja boli i topline, odgovornost za sposobnost čitanja i pisanja, logičke i analitičke sposobnosti mišljenja.

Dugoročno pohranjivanje informacija. Interpretacija i usporedba informacija, prepoznavanja govora i izraza lica, dekodiranje živčanih impulsa koji dolaze iz mirisnih receptora.

Kritično samopoštovanje, adekvatnost ponašanja, raspoloženje. Proces učenja, ovladavanje vještinama, stjecanje uvjetovanih refleksa.

Interakcija mozga

Osim toga, svaki dio mozga ima svoje zadatke, cijela struktura određuje svijest, karakter, temperament i druge psihološke karakteristike ponašanja. Formiranje određenih tipova određeno je različitim stupnjem utjecaja i aktivnosti određenog segmenta mozga.

Prvi psiho ili koleričan. Formiranje ovog tipa temperamenta javlja se s dominantnim utjecajem frontalnih režnjeva korteksa i jednim od subregija diencefalona - hipotalamusa. Prvi generira svrhovitost i želju, drugi dio pojačava te emocije s potrebnim hormonima.

Karakteristična interakcija podjela, koja određuje drugi tip temperamenta - sangvinizam, je zajednički rad hipotalamusa i hipokampusa (donji dio temporalnih režnjeva). Glavna funkcija hipokampusa je održavanje kratkoročne memorije i pretvaranje dobivenog znanja u dugoročno. Rezultat ove interakcije je otvoren, znatiželjan i zainteresiran tip ljudskog ponašanja.

Melanholičan - treći tip temperamentnog ponašanja. Ova opcija se formira s pojačanom interakcijom hipokampusa i druge formacije velikih hemisfera - amigdale. Istovremeno se smanjuje aktivnost korteksa i hipotalamusa. Amigdala preuzima cijeli "prasak" uzbudljivih signala. No, budući da je percepcija glavnih dijelova mozga inhibirana, odgovor na ekscitaciju je nizak, što pak utječe na ponašanje.

S druge strane, formirajući čvrste veze, frontalni je režanj sposoban postaviti aktivni model ponašanja. U interakciji korteksa ovog područja i krajnika, središnji živčani sustav generira samo vrlo značajne impulse, ignorirajući neznatne događaje. Sve to dovodi do formiranja flegmatičnog modela ponašanja - jake, svrsishodne osobe sa sviješću o prioritetnim ciljevima.

Vam Se Sviđa Kod Epilepsije